On Deriving the Second-Stage Training Set for Trainable Combiners
نویسندگان
چکیده
Unlike fixed combining rules, the trainable combiner is applicable to ensembles of diverse base classifier architectures with incomparable outputs. The trainable combiner, however, requires the additional step of deriving a second-stage training dataset from the base classifier outputs. Although several strategies have been devised, it is thus far unclear which is superior for a given situation. In this paper we investigate three principal training techniques, namely the re-use of the training dataset for both stages, an independent validation set, and the stacked generalization. On experiments with several datasets we have observed that the stacked generalization outperforms the other techniques in most situations, with the exception of very small sample sizes, in which the re-using strategy behaves better. We illustrate that the stacked generalization introduces additional noise to the second-stage training dataset, and should therefore be bundled with simple combiners that are insensitive to the noise. We propose an extension of the stacked generalization approach which significantly improves the combiner robustness.
منابع مشابه
A Trainable Similarity Measure for Image Classification
In object recognition problems a two-stage system is usually adopted composed of a fast and simple detector and a more complex classifier. This paper studies a design of the second stage classifier based on the recently proposed trainable similarity measure which is specifically designed for supervised classification of images. Common global measures such as correlation suffer from uninformativ...
متن کاملAn Empirical Study of a Linear Regression Combiner on Multi-class Data Sets
The meta-learner MLR (Multi-response Linear Regression) has been proposed as a trainable combiner for fusing heterogeneous baselevel classifiers. Although it has interesting properties, it never has been evaluated extensively up to now. This paper employs learning curves to investigate the relative performance of MLR for solving multi-class classification problems in comparison with other train...
متن کاملStudy on Teaching Methods in Entrepreneurship Education
Background: Entrepreneurship can be considered as an educable and trainable matter. Increasing entrepreneurship training causes improvement in entrepreneurial culture indicators and as a result, the growth of entrepreneurship and the institutionalization of the culture. On the other hand, with the growth of an entrepreneurial culture, educational level changes and leads to economical growth ...
متن کاملA New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملDriver Recognition Using Gaussian Mixture Models and Decision Fusion Techniques
In this paper we present our research in driver recognition. The goal of this study is to investigate the performance of different classifier fusion techniques in a driver recognition scenario. We are using solely driving behavior signals such as break and accelerator pedal pressure, engine RPM, vehicle speed, steering wheel angle for identifying the driver identities. We modeled each driver us...
متن کامل